¿Qué es la Analítica Aumentada? (augmented analytics) #GartnerABI 01

La Analítica Aumenta o Augmented Analytics es uno de los términos más utilizados en el reciente informe de Gartner sobre las plataformas de Business Intelligence (BI) y Analytics 2020, más conocido como “Magic Quadrant for Analytics and Business Intelligence Platforms”.


En este informe se señala que la Analítica Aumentada es uno de los principales elementos diferenciadores, con mayor potencial de crecimiento y despliegue en las propuestas de los principales fabricantes de software analítico. Pero que no necesariamente, todo este crecimiento, irá de la mano con la capacidad de consumo de los usuarios, tal es así, que Gartner predice que para 2022 estas capacidades analíticas serán omnipresentes, pero sólo el 10% de los analistas utilizará todo su potencial.

¿Pero en qué consiste la Analítica Aumenta?

Para definir correctamente este término nos basamos en dos fuentes, por un lado, de Gartner, el cual afirma lo siguiente:

La analítica aumentada es el uso de tecnologías habilitadoras como el aprendizaje automático (machine learning) y la inteligencia artificial (AI) para apoyar la preparación de los datos, generación de conocimiento y la explicación de la información para potenciar la forma en que las personas exploran y analizan datos en las plataformas de análisis y BI. 

Otra referencia es la que encontramos en el siguiente vídeo:

Conclusión

El Augmented Analytics incluirá en las plataformas de Análisis y BI una serie de funcionalidades para facilitar la interacción de los usuarios con la plataforma o herramienta de análisis y obtener datos de mayor calidad y fiabilidad. Se augura que en algún día nos podamos comunicar con las soluciones o “máquinas” de análisis tal como si fuera otro humano y obtener respuestas útiles e inmediatas.

Pero, ¿por qué es tan negativo Gartner al señalar que sólo el 10%  utilizará todo el potencial de la Analítica Aumentada en 2022? Consideramos que este “pesimismo” obedece a que deberá darse una curva de aprendizaje y, sobre todo, porque todo lo que conlleva estas funcionalidades no son nuevas, la novedad está en incluirlas, de forma armónica, en un producto.

Estamos hablando de tecnologías tales como la inteligencia artificial, aprendizaje automático, procesamiento de lenguaje natural, minería de datos o estadística. A mi parecer, si estas técnicas “veteranas” no se han utilizado tanto, como debería ser, en soluciones de análisis, es porque cada una de las partes “hablan de su libro”, por un lado, los técnicos y consultores no aparcan en su discurso sus “técnicas” y “algoritmos”. Y, por otro lado, los usuarios desean hablar de los “procesos clave de su negocio”, y es aquí dónde nos debemos centrar, para identificar con claridad la visión, objetivos del análisis y, en consecuencia, identificar la arquitectura de datos que se requiere.

Autor: anibal goicochea

anibal goicochea mendo Formador y Consultor Informático, especialista en Business Intelligence, Planificación, Presupuestos, Consolidación Financiera y Datawarehousing con soluciones basadas en SAP BW/HANA, SAP BPC y SAP BusinessObjects BI, entre otros productos.

Deja un comentario... Gracias!!!

Introduce tus datos o haz clic en un icono para iniciar sesión:

Logo de WordPress.com

Estás comentando usando tu cuenta de WordPress.com. Cerrar sesión /  Cambiar )

Google photo

Estás comentando usando tu cuenta de Google. Cerrar sesión /  Cambiar )

Imagen de Twitter

Estás comentando usando tu cuenta de Twitter. Cerrar sesión /  Cambiar )

Foto de Facebook

Estás comentando usando tu cuenta de Facebook. Cerrar sesión /  Cambiar )

Conectando a %s